

Coaxial Cable Selection for your HF

SMRA Meet the Mentor
KC3VEB

Your HF Station

- HF Radio
- Speaker
- Microphone
- Power supply
- Matcher
- SWR Meter
- Antenna
- Coax Cable/Feedline
- Connector

Why the cable matters

- The antenna is half of your overall station
- Half of your antenna is the coax cable
- How to get good signal:
 - Pick the correct cable size for your use
 - Get a good quality cable
 - Pick the correct connector for your HF
- Think of the coax as a garden hose. The antenna is the sprinkler head, and the feedline is the hose itself. If the hose has leaks (loss) or kinks (bad connectors/impedance mismatch), you won't get full pressure at the sprinkler, no matter how good the sprinkler is

Difference between SWR and Loss

SWR & LINE LOSS

Standing Wave Ratio (SWR) - the measure of impedance matching of loads to the impedance of a transmission line or waveguide.

Line Loss - the signal degradation that occurs as RF energy travels through a transmission line, like a coax cable.

- Causes

- Conductor loss
- Dielectric loss
- Radiation loss

ANTENNA MATCHERS (TUNERS)

“Fixing” SWR through an Antenna Matcher (Tuner).

- While an antenna tuner can correct a high SWR and protect your transmitter, it does not recover the power already lost in the feedline. If your coax has 3 dB of loss, you’re losing that power before it even gets to the antenna, and the tuner can’t fix that.

Types of Cables - Thin and Flexible

RG-58

RG-8X

- **RG-58** - Portable ops, low power (QRP)
- **RG-8X** - Short runs up to 100W, mobile installations
- Use Case: Short runs under 50ft, temporary stations, or low-power (SOTA, POTA, QRP)

PROS & CONS	
PROS	CONS
Flexible Small bending radius Lightweight	Higher loss, especially as frequency increases Lower power handling capacity (sub 100W)

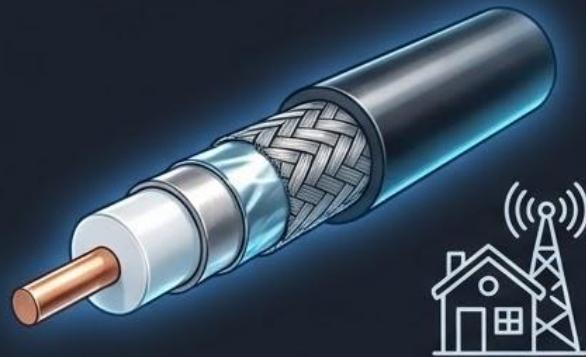
Types of Cables - Medium/Standard Performance

RG-213 - Permanent fixed station installs, high power, moderate loss.

RG-8U - Older standard, similar performance to RG-213.

Use Cases: Good choice for most permanent stations with runs under 100ft.

PROS


- 🔌 Good power handling up to 1500W
- 🛡️ Rugged and durable
- ⚖️ Good balance of cost and performance

CONS

- ➡️ Less flexible than RG8X
- ⚖️ Heavier than smaller cables

Types of Cables - Low-Loss performance

LMR-400

Use cases: Permanent stations that need more than 100ft of cable. Great for multi-band antennas and competitive stations operating at high power consistently.

PROS

- ✓ Significantly lower loss than previous cables
- ✓ Rugged and durable, superior shielding

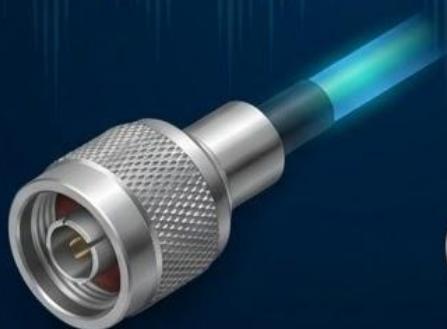
CONS

- ✗ Stiffer, larger minimum bend radius
- ✗ Can be more expensive

Loss Chart

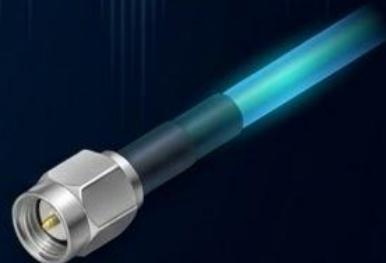
Cable Type	Loss at 7 MHz (40m) per 100 ft	Loss at 28 MHz (10m) per 100 ft
RG-58	≈ 1.2 dB	≈ 2.7 dB
RG-8X	≈ 0.7 dB	≈ 1.8 dB
RG-213	≈ 0.4 dB	≈ 1.0 dB
RG-8U	≈ 0.4 dB	≈ 1.1 dB
LMR-400	≈ 0.2 dB	≈ 0.5 dB

Practical Example: If you are running 100W on 10 meters over 100 feet:


- With **RG-58** (2.7 dB loss), you transmit ~ 54W to the antenna.
- With **LMR-400** (0.5 dB loss), you transmit ~ 89W to the antenna.

Picking a Connector

- Depends primarily on what connector your radio accepts
- There are adapters to change from one connector to another
- Types of connectors:


PL-259

N-Type Connector

BNC Connector

SMA Connector
(VHF/UHF)

Types of Connectors: PL-259 (UHF Connector)

⌚ Design and History:

⌚ It was originally designed during a time when "UHF" meant frequencies over 30 MHz. Hence UHF Connector.

⚙️ **The Impedance Issue:** Virtually all of the impedance bump and consequent loss is in the UHF female connector, the SO-239. A typical SO-239 UHF female, properly hooded, has a difference in impedance from the standard 50 **Ohm** line impedance of about 35 Ohms

✓ Pros:

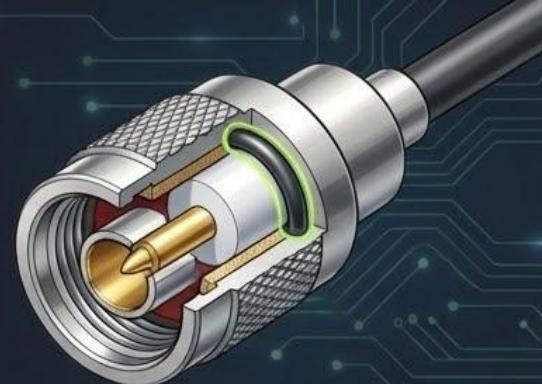
✓ **Universal:** Found on virtually all amateur HF equipment.

✓ **Rugged:** Mechanically strong and reliable.

✓ **Easy to Terminate:** Straightforward soldering and assembly (especially on larger cables like RG-213).

✓ **Cost-Effective:** Generally the cheapest option.

⚠️ Cons:


⚠️ Lots of cheap PL-259 connectors on the market.

⚠️ **Weather Resistance:** Not inherently watertight. It requires meticulous weatherproofing.

Installation Note: When using a PL-259 on thin cables (like RG-58 or RG-8X), you **must** use a reducer sleeve to ensure the connector body grips the cable jacket securely.

Types of Connectors: N-Type

Design and Performance:

- ▲ A true 50 Ohm design from DC up to 11 GHz (depending on quality).
- ▲ Superior RF performance due to its constant impedance through the coupling area.
- ▲ Named after its designer, Paul Neill, at Bell Labs.

Pros:

- ▲ **Superior Performance:** Extremely low loss and minimal SWR bump up to VHF/UHF.
- ▲ **Weatherproof:** The N-Type connector features an internal O-ring seal, making it inherently water-resistant when mated correctly, far surpassing the PL-259.

Cons:

- ▲ **Cost:** Significantly more expensive than PL-259s.
- ▲ **Installation:** Typically requires crimping tools and is generally more difficult to terminate correctly, especially for the high-performance LMR-400 style cables.
- ▲ **Compatibility:** Requires N-to-SO-239 adapters to connect to most amateur HF radios, which reintroduces a discontinuity.

- ★ **Recommendation:** While the PL-259 is perfectly fine for most HF work, the N-Type is the gold standard for long runs of low-loss cable (LMR-400), especially if the cable is also used for 6 meters or above.

Types of Connectors

BNC (Baby Neill Constant)

Design and Function:

- Uses a bayonet-style lock for rapid connection and disconnection.
- Common in mobile, portable, and test equipment.
- Primarily for smaller diameter cables (RG-58, RG-8X).
- Also designed by Paul Neill.

Pros:

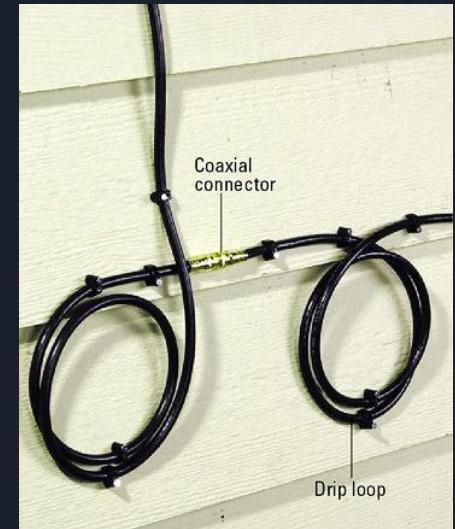
- **Speed and Convenience:** Excellent for Field Day, portable operations, and test benches.
- **Reliable Connection:** Locking mechanism ensures a positive, secure connection.
- **Good Impedance Match:** Better than PL-259 across HF and into VHF/UHF.

Cons:

- **Power Limit:** Limited power rating, typically < 100 W for QRP or low-power.
- **Cable Size:** Best used only with smaller, flexible cables.

Recommendation: Ideal for connecting test gear, QRP rigs, or for quick-deploy, temporary antenna connections.

Installation of Cable at QTH


- Shack to Antenna

- Distance from entry point into shack
- Distance to antenna
- Additional accessories
 - Antenna switcher
 - Lightning Arrestor
- Strain Relief: Never let the antenna or tower pull directly on the connector.
 - Provide some way for the cable to relieve tension on the connector.

Installation of Cable at QTH (cont)

- Weatherproofing
 - Drip Loop - Weak point of cable is the connector. If not properly weatherproofed, water can run down cable and enter the connector. Always secure the cable so that the connection point is above the lowest point of the loop.
 - Weatherproofing tape - Two part tape to protect connectors from rain and the elements.
 - Rubber splicing tape is self-fusing sealing tape acts as a water barrier. Put on first around the connector.
 - Vinyl electrical tape is added around the first layer of tape, to act as a UV barrier.

Pre-made or Build your own cable

Pre-built options

- ✓ Tend to cost more
- ✓ Can generally only buy in certain sizes
- ✓ Quick installs, no experience necessary
- ✓ Great choice for smaller cable types like RG-58

Bulk cables - Build your own

- ✓ You can buy by the foot or in bulk and cut to length
- ✓ Generally cheaper per ft
- ✓ Does require some specialized tools to cut and crimp
- ✓ Good experience (and required for things like Emcomm)

Building your own cables

- Items you'll need to properly build your own coax cable.
 - Coax of course
 - The correct sized connector and shield (PL-259, Type N, etc.)
 - Crimpers
 - Make sure to get a good set that comes with multiple crimp dies.
 - Coax cutters
 - Knife or Coax Stripper (get the correct one for your sized cable)
 - Soldering iron and soldering accessories
 - Heat Shrink
 - Multimeter for testing
 - This isn't necessarily required, but it's a good idea to have so you know if your cable was made correctly before plugging into your radio.

PL-259 Connectors

DX Engineering Next Generation Crimp/Solder 8X PL-259 Connectors DXE-PL259CS8X-12

Coaxial Connector, PL259 for RG-8X/LMR240 type Cable, 12 per Package, Each

\$58.99

Part Number: DXE-PL259CS8X-12

★★★★★ (50)

In Stock (more than 10 available)

1

Add To Cart

Compare Wish List

Estimated Ship Date: Tomorrow

Documentation Charts & Guides Multiple Images

DX Engineering Next Generation Crimp/Solder 8U PL-259 Connectors DXE-PL259CS8U-6

Coaxial Connector, PL259 for RG-8U/LMR400 type Cable, 6 per Package, Each

\$32.99

Part Number: DXE-PL259CS8U-6

★★★★★ (115)

In Stock (more than 10 available)

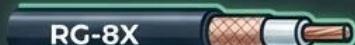
1

Add To Cart

Compare Wish List

Estimated Ship Date: Tomorrow

Documentation Charts & Guides Multiple Images


Conclusion

CHOOSE THE CONNECTOR

PL-259 will work for most everyone operating at home in the HF spectrum.

CHOOSE THE CABLE

RG-8X

RG-213

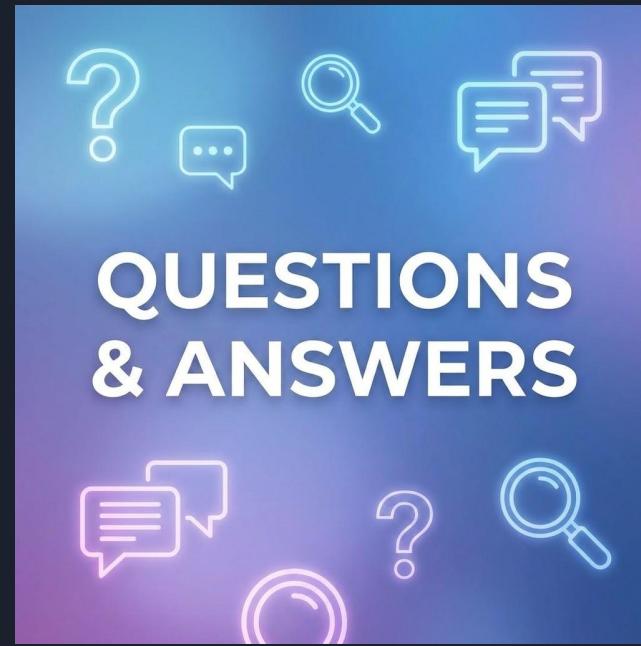
RG-8X is great for QTH's that have short runs... or for portable use.

If you leave your antenna up year round, consider getting RG-213 for its durability.

INSTALLATION & TESTING

Weatherproofing will keep your cable working for a long time.

Avoid straining your cable at the antenna and home connections.



Test the line using an Ohmmeter to check for loss.

Use an Antenna analyzer to check SWR.

Questions?

